Unusual oxidation state distributions observed for two mixed-valence heptanuclear manganese disc-like clusters.
نویسندگان
چکیده
The synthesis, structures and magnetic properties of two new mixed-valence heptanuclear manganese clusters are described. Both complexes utilize triethanolamine (teaH(3)) as a bridging ligand, displaying near planar, disc-like metal topologies and are of formulae [Mn(II)(4)Mn(IV)(3)(tea)(teaH(2))(3)(peolH)(4)](BF(4))(2)·solv (1) and [Mn(II)(4)Mn(III)(3)F(3)(tea)(teaH)(teaH(2))(2)(piv)(4)(Hpiv)(chp)(3)]·0.5MeCN (2). Compound 1 is a rare mixed-valence compound containing Mn(II) and Mn(IV) ions only and is the first example of a heptanuclear disc with a {Mn(II)(4)Mn(IV)(3)} oxidation state distribution. Compound 2 is a {Mn(II)(4)Mn(III)(3)} complex and displays a unique arrangement of oxidation states within the disc, when compared to other known {Mn(II)(4)Mn(III)(3)} examples. Variable temperature DC and AC magnetic susceptibility studies were carried out for 1 and 2 in the 2-300 K temperature range. Compound 1 displayed an increase in the χ(M)T susceptibility values as the temperature is decreased indicating dominant ferromagnetic interactions are present within the cluster. Fits of the χ(M)T vs. T data reveals an S = 23/2 ground state, with several close lying excited states within 1 cm(-1). Compound 2 displays an overall decrease in the χ(M)T value as the temperature is decreased down to 2 K indicating dominant antiferromagnetic interactions present with a probable S = 4 ground state as determined from the DC and AC susceptibility data.
منابع مشابه
What controls the magnetic exchange interaction in mixed- and homo-valent Mn7 disc-like clusters? A theoretical perspective.
Density functional theory (DFT) studies have been undertaken to compute the magnetic exchange and to probe the origin of the magnetic interactions in two hetero- and two homo-valent heptanuclear manganese disc-like clusters, of formula [Mn(II) 4 Mn(IV) 3 (tea)(teaH2 )3 (peolH)4 ] (1), [Mn(II) 4 Mn(III) 3 F3 (tea)(teaH)(teaH2 )2 (piv)4 (Hpiv)(chp)3 ] (2), [Mn(II) 7 (pppd)6 (tea)(OH)3 ] (3) and [...
متن کاملMixed-valence heptanuclear iron complexes with ferromagnetic interaction.
Three new Prussian blue analogues, heptanuclear mixed-valence iron complexes of the type [Fe(II)(CN)(6){Fe(III)(1(-2H))}(6)]Cl(2)·nH(2)O, were synthesized and structurally and spectrally characterized, and their magnetic properties were investigated (1(-2H) corresponds to doubly deprotoned Schiff-base pentadentate ligands 1a, N,N'-bis(2-hydroxybenzylidene)-1,5-diamino-3-azapentane, 1b, N,N'-bi...
متن کاملAn azido-bridged disc-like heptanuclear cobalt(II) cluster: towards a single-molecule magnet.
A disc-like heptanuclear Co(II)-cluster, [Co7(bzp)6(N3)9(CH3O)3].2ClO4.2H2O (1) (bzp = 2-benzoyl pyridine), mixed-bridged by 3/4 azides (mu1,1 and mu1,1,1) and 1/4 mu1,1,1-methanol, shows slow relaxation at static zero and non-zero fields below 6 K, towards single molecule magnet behavior.
متن کاملWhy did Nature choose manganese to make oxygen?
This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element--it is mobile, wea...
متن کاملNew high-nuclearity manganese clusters containing mixed chelating ligands: syntheses, crystal structures and magnetochemical characterization.
Two polynuclear mixed-valence manganese clusters, [Mn(13)] and [Mn(16)], containing mixed chelating ligands were synthesized and structurally characterized. The alternating current (AC) susceptibilities of both complexes reveal nonzero frequency-dependent out-of-phase (χ(M)'') signals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 41 32 شماره
صفحات -
تاریخ انتشار 2012